

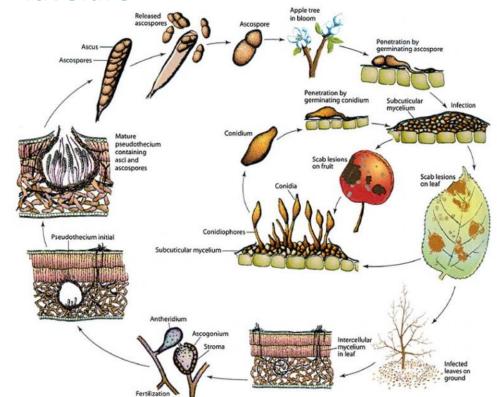
Expérimentation sur les PNPP

Arboriculture fruitière

Anne DUVAL-CHABOUSSOU

Déroulé

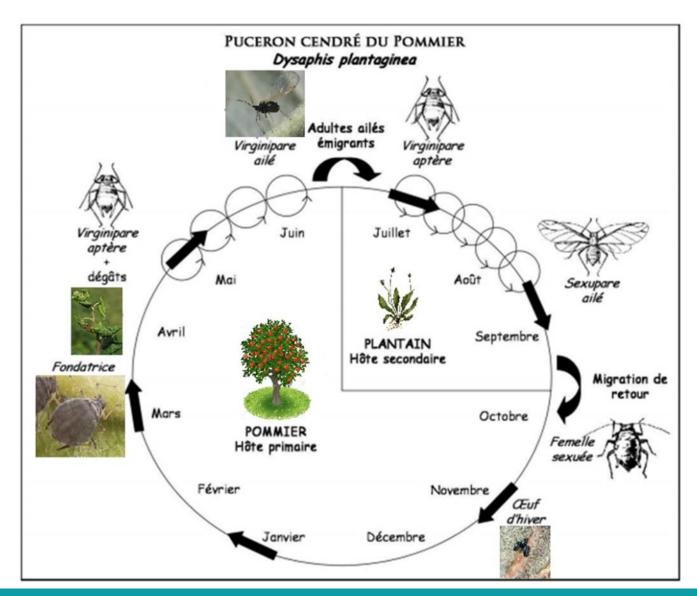
- Contexte
- Objectifs
- Travaux d'expérimentation sur les PNPP
 - Cadre d'étude
 - Méthodologie et résultats
 - I. Identification du mode d'extraction optimal «à la ferme »
 - II. Résultats d'essais sur la tavelure du pommier
 - III. Résultats d'essais sur l'hoplocampe du pommier
- Conclusion et perspectives


- Station d'études et d'expérimentations de la Morinière:
 - 32 ha de verger (pommes, poires, petits fruits)
- **●** 21 ETP
- Pomme: 1^{er} fruit consommé et cultivé en France
- Centre Val-de-Loire: 2^{ème} bassin de production

- Bioagresseurs majeurs du pommier:
 - **Tavelure**

Cycle de vie de Venturia inaequalis (tiré de Bowen et al., 2011)

http://dumas.ccsd.cnrs.fr/docs/00/90/64/38/PDF/Poisson Anne-Sophie Analyse genes pommier Venturia inaequalis .pdf


Tache de tavelure sur feuilles Source: CTIFL/La morinière

Tache de tavelure sur fruits Source: CTIFL/La morinière

→ 20 traitements en moyenne contre la tavelure en Centre Val de loire (Agreste, 2015)

Colonie de pucerons cendrés sur feuille de pommiers

Fruits déformés et de petite taille dûs au puceron cendré Source: CTIFL/La morinière

→ Insecticides (AB et PFI) remis en questions

- **★**Bioagresseurs mineur du pommier:
 - ***** Tavelure
 - **●** Pucerons cendrés
 - Hoplocampe

Ponte des adultes lors de la floraison

→ Pas de produit homologué en AB (Success 4 en dérogation)

Diapause – 9 à 21 mois

Dégâts secondaires

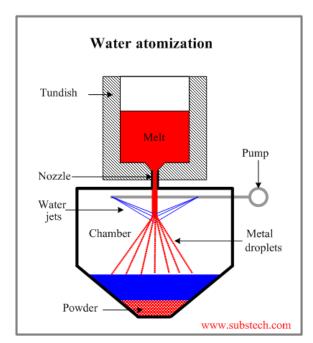
Objectifs

- ✓ Recherche croissante de solutions alternatives à l'utilisation de pesticides dans la protection des cultures: biocontrôle et PNPP
- ✓ Demande des familles professionnelles CTIFL d'évaluer les substances naturelles et en particulier les PNPP
 - 1. Evaluation de produits PNPP commercialisés
 - 2. Evaluation de produits fabriqués « à la ferme »

Travaux d'expérimentation sur les PNPP

- Cadre d'étude
- Méthodologie
- Résultats
- Bilan

Cadre d'étude des PNPP


Extraits végétaux

- 1. Plantes ou parties de plantes:
 - Substances de base
 - 2. Substances Naturelles A Usages Biostimulants
 - 3. Parties alimentaires de plantes
 - Substances ayant un potentiel d'inscription dans l'une des catégories
 - → Armoise, absinthe, rue, tabac... proscrites
- 2. Solvant: eau et alcool
 - → Méthanol, hexane... proscrits

3. <u>Modes d'extraction définis</u>: infusion, décoction, macération à froid, extrait fermenté, huiles essentielles

Procédés: centrifugation, atomisation, lyophilisation ... « accessible par tout utilisateur final »

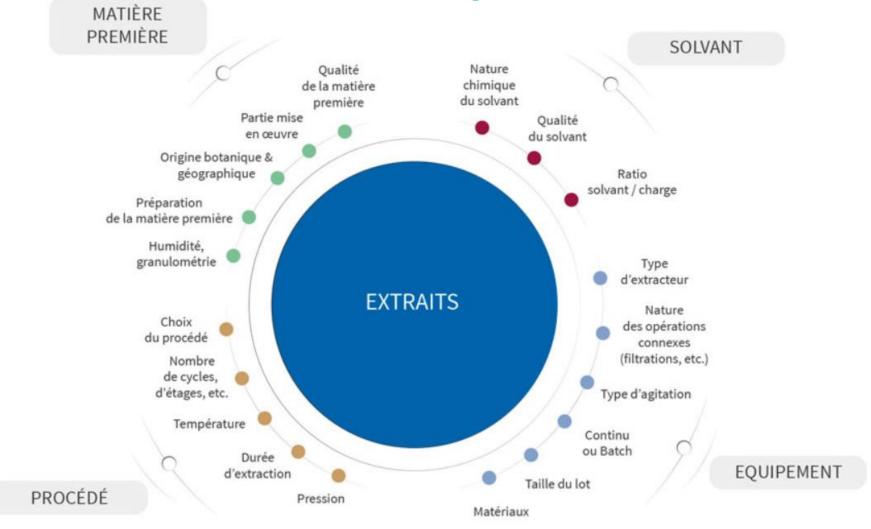


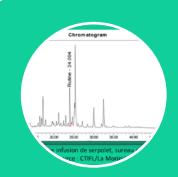
Schéma des paramètres influençant la qualité des extraits – Source: www.berkem.com

Matière première et solvant

Procédés et équipements

Méthodologie d'étude des PNPP

Identification des plantes


Critères de durabilité

Extraction

Conservation

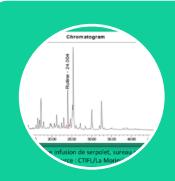
Analyse
phytochimique
Identification de
traceurs/
principes actifs

Screening in vivo et in vitro

Evaluation mode d'actions

Essais au champ

I. Identification des plantes


Identification des plantes

Critères de durabilité

Extraction

Conservation

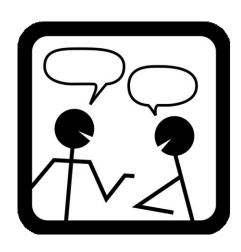
Analyse
phytochimique
Identification de
traceurs/
principes actifs

Screening in vivo et in vitro

Evaluation

Evaluation mode d'actions

Mode d'application au champ

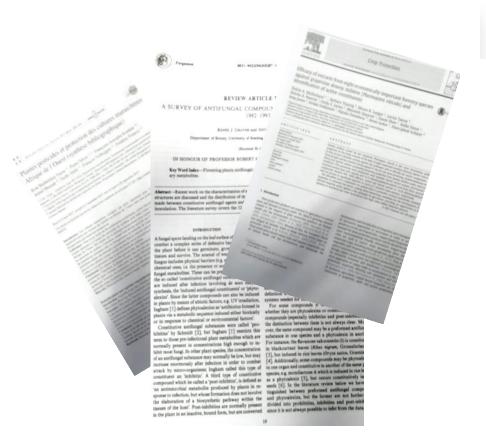

Bibliographie populaire

- Entretien avec arboriculteurs pratiquants
- ✓ Lecture de livres de vulgarisation
- Echanges de pratiques sur les forums

Choix des extraits n°1

Bibliographie littérature populaire

Identification des extraits



Plantes sèches pour extraits végétaux. CTIFL/La Morinière, 2018

Plantes	Partie de	Mode
	la plante	opératoire
Origan Clou de girofle	Plante entière	Huile essentielle (HE)
Ortie	Racine	Décoction
Serpolet, Sureau, clou de girofle	Feuilles Feuilles	Infusion
Prêle	Partie aérienne stérile	Décoction

Bibliographie scientifique

- → Une centaine de publications étudiées
- →Grille de sélection:
 - ✓ protocole
 - ✓ mode d'extraction des extraits
 - √ dosage phytochimique

Choix des extraits n°2

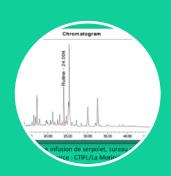
Bibliographie littérature scientifique

Identification des extraits

Plantes	Partie de la plante	Mode opératoire
Jonc	Plante entière	Infusion
Lierre	Feuilles	Infusion
Bouleau	Feuilles	Infusion
Peuplier	Bourgeons	Macération alcoolique

Exemples de nouveaux extraits identifiés par la bibliographie. CTIFL/La Morinière, 2018.

II - Extraction


Identification des plantes

Critères de durabilité

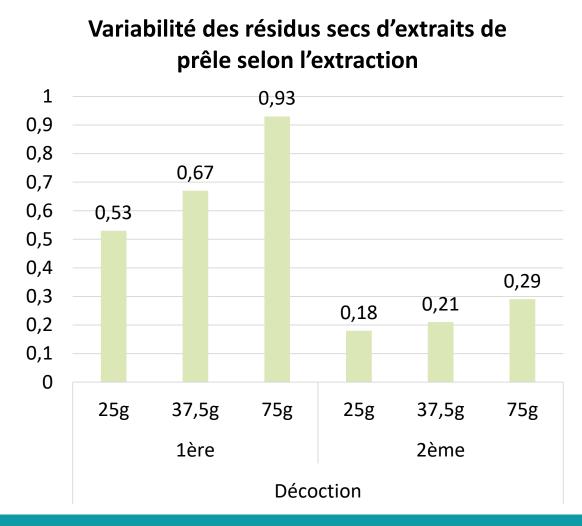
Extraction

Facilité d'extraction Conservation

Analyse
phytochimique
Identification de
traceurs/
principes actifs

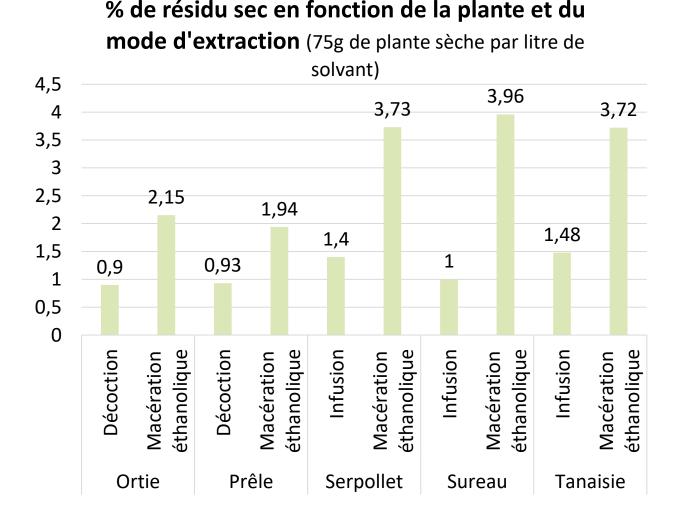
Screening in vivo et in vitro

Evaluation mode d'actions


Mode d'application au champ

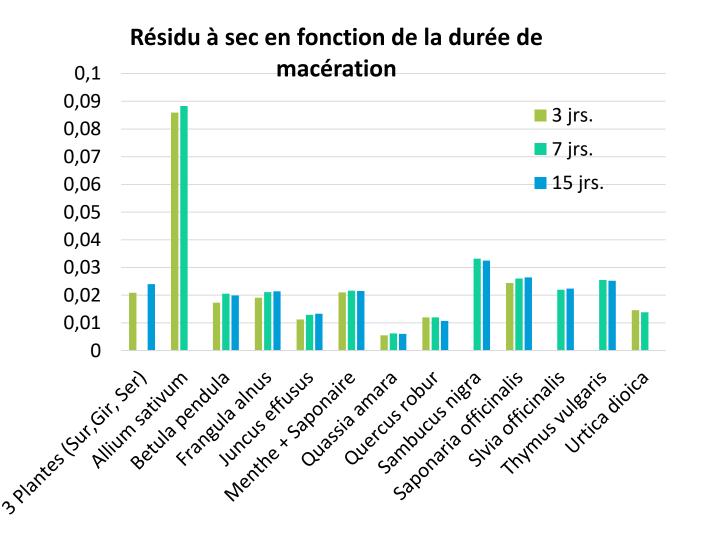
Intérêt de 2 décoctions successives ? Effet du grammage de plante ?

Augmentation du grammage = augmentation du résidu sec.


La deuxième décoction parvient à extraire environ 30% du solide extrait lors de la première décoction.

Extraction aqueuse ou hydroalcoolique?

Une macération éthanolique à 40° permet de gagner + de 50% de résidus secs, et donc de matières solides dans l'extrait.



Durée de la macération ?

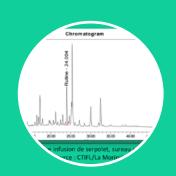
Impact de la durée de macération très faible: entre **0,1% et 0,5%**

Pas de recul sur d'éventuelles influences sur les molécules extraites



III - Analyses phytochimiques

Identification des plantes

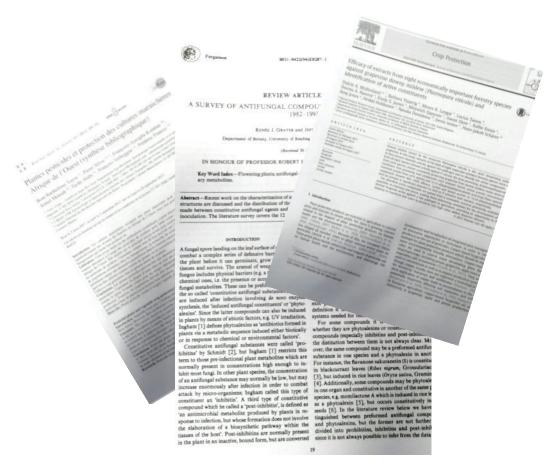

Critères de durabilité

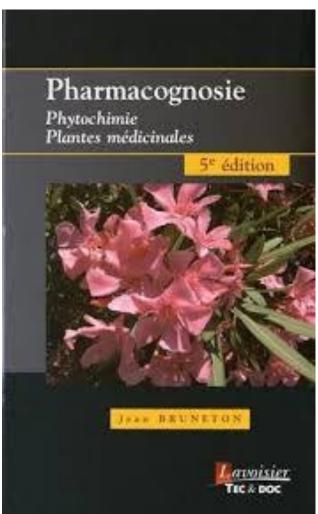
Extraction

Conservation

Analyse
phytochimique
Identification de
traceurs/
principes actifs

Screening in vivo et in vitro

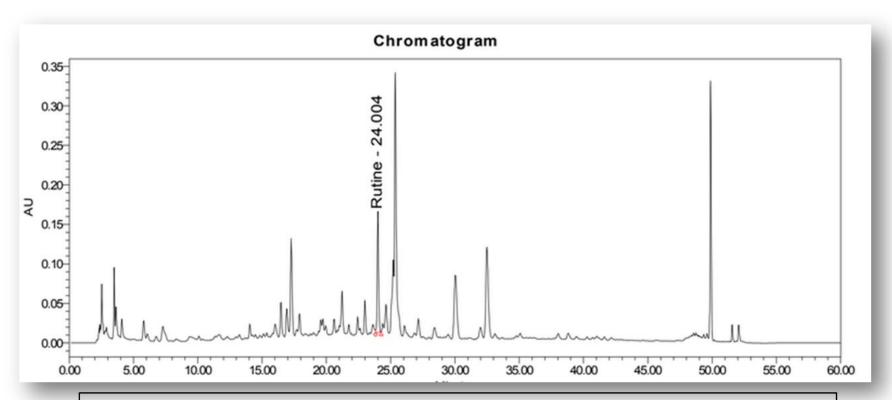

Evaluation mode d'actions



Essais au champ

Composition phytochimique

Quelles analyses s'appuyer?


- Analyses effectuées par Indena® et l'université de Tours.
- Taux de matières sèches et analyses HPLC.

Composition phytochimique

Chromatogramme d'une infusion de serpolet, sureau et clou de girofle (HPLC). Source : CTIFL/La Morinière

→ Identification d'un traceur par plante

Extraction aqueuse ou hydroalcoolique?

Tableau présentant des données et des appréciations extraites de rapports d'analyses HPLC. Rapport écrit par l'université de Tours. Echantillons d'extraits végétaux fabriqués à la Morinière.

Plante	Extraction	Nombre de composés identifiés dans l'extrait	Observations des analystes
Sureau	Aqueuse	16	x 1
(Sambucus nigra)	Ethanolique (40°)	16	x 10
Serpolet	Aqueuse (Infusion)	17	Traces
(Thymus serpyllum)	Ethanolique (40°)	15	Quantifiables

Identification des plantes

- Décoction de racines d'ortie à l'eau à 95°C pendant 30 min
 - quantité plante/solvant
 - nombre de digestion

Quantité de plantes	Quantité de solvant	Digestion	Traceur	Valeur traceur	Ré	ésidus à secs (%)
75g	1,5L	1ère	scopoletine	non détecté		0,9
75g	1,5L	2ème		non détecté		0,25
37,5g	1L	1ère		non détecté		0,65
37,5g	1L	2ème		non détecté		0,18
25g	1L	1ère		non détecté		0,51
25g	1L	2ème		non détecté		0,15

→ Contrôle de la qualité fournie

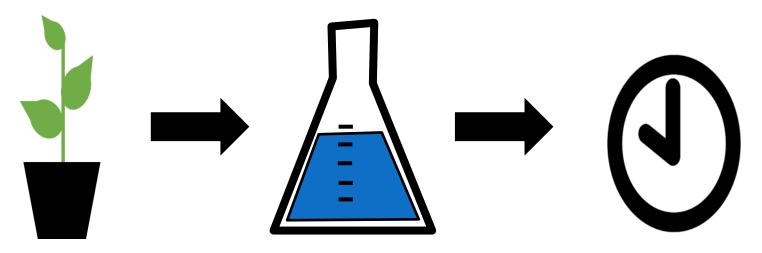
Quelle extraction standard?

Matériel végétal

Plantes sèches, pour conservation et utilisation facile.

Cailleau Herbio® ou autre, mais **fournisseur unique** par soucis d'homogénéité des conditions de production.

Solvant


Alcool, éthanol à 40°.

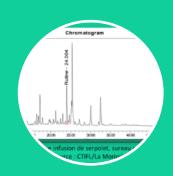
Respect du cahier des charges PNPP, accessibilité, faible dangerosité.

Durée avant filtration

Macération pendant 7

jours: pratique et extrait une quantité suffisante de matières solides. Dans verrerie opaque/à l'ombre, à T° ambiante.

IV - Essais in vitro et in vivo


Identification des plantes

Critères de durabilité

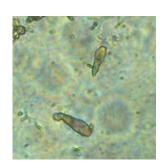
Extraction

Conservation

Analyse
phytochimique
Identification de
traceurs/
principes actifs

Screening in vivo et in vitro

Evaluation mode d'actions


Travaux au champ

Travaux en laboratoire

Tavelure du pommier

Méthodologies de screening in vitro et in vivo

Suspensions de spores

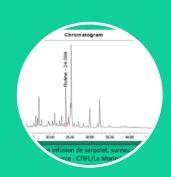
Plaque de puits

Boîtes de pétri

Semis

Taux de germination des conidies et fréquence des symptômes sur semis

V - Essais au champ


Identification des plantes

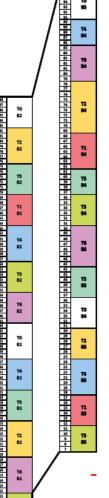
Critères de durabilité

Extraction

Conservation

Analyse
phytochimique
Identification de
traceurs/
principes actifs

Screening in vivo et in vitro


Evaluation mode d'actions

Essais au champ

Application au verger

то	TEMOIN NON TRAITE
T1	REFERENCE BIO
T2	1/2 REFERENCE BIO
тз	T2 + HE origan et HE clou de girofie
T4	T2+ Décoction de racines d'ortie
T5	T2 + Infusion de feuilles de sureau, serpolet et clou de girofie
те	T2+ Décoction de prêle

ia?

- Quelle quantité de plantes/ha?
- Quelle dilution?
- Quel adjuvant?

Figure 10 : Plan de l'expérimentation au verger menée à la Morinière source : Charlotte BODART, 2018 Atomiseur autonome Yonisos, Station La Morinière

Dosage plantes/ha

CRITERES:

Quantité de plantes/ha: de 1 à 5kg

Quantité plante/solvant:10%

Quantité extrait/volume de bouillie: 10%

Adjuvant: Héliosol

Données de base		
Qt de plante / ha (g)	5000	
Qt bouillie / ha (I)	500	
Volume mort bouillie (I)	75	
Surface à traiter (ha)	1	
	Volume (L)	Quantité de
	volume (L)	plantes (kg)
Qt pour traitement	500,00	5,0
Qt à préparer avec volume mort	575,00	5,8
Qt de solvant de départ pour extraction	57,50	
Qt estimée d'extrait récupéré à diluer	43,13	insérer si mesuré
Concentration matière sèche extrait (%)	0,11%	Si analyses
Concentration en traceur / extrait sec (%)	5,00%	dispo
Quantité MS du traitement (kg)	0,041	
Quantité traceur du traitement (kg)	0,0024	
Dose en kg d'extrait sec / ha	0,041	
Dose en kg de traceur / ha	0,002	

Essai substances naturelles sur la tavelure du pommier – 2019

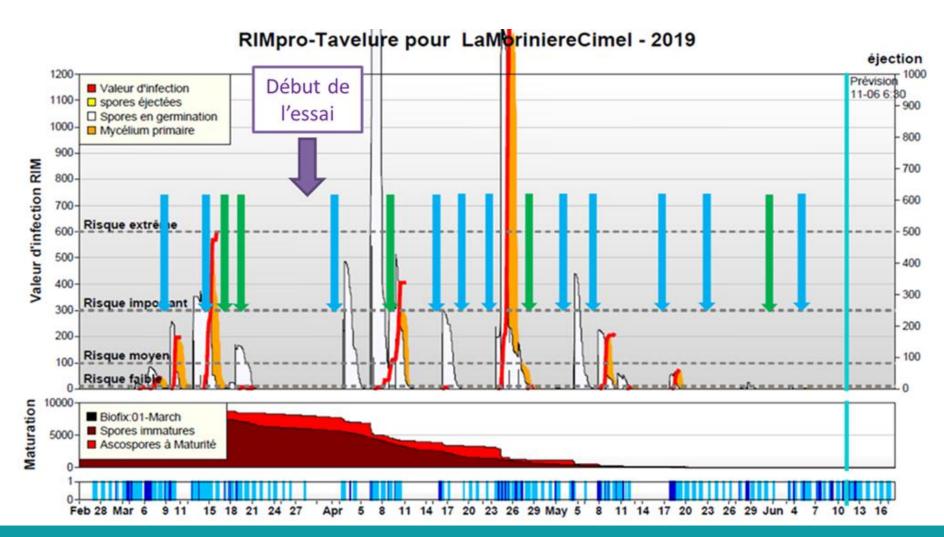
• Caractéristiques de la parcelle (PFI):

Variété :	Galaval (mutant de Gala)
Porte-greffe:	Emla
Distances de plantation :	4,00 m x 1,25 m (2000 arbres/ha)
Date de surgreffage :	2015 sur plantation 2002
Irrigation:	goutte à goutte

Essai substances naturelles sur tavelure du pommier - Gala

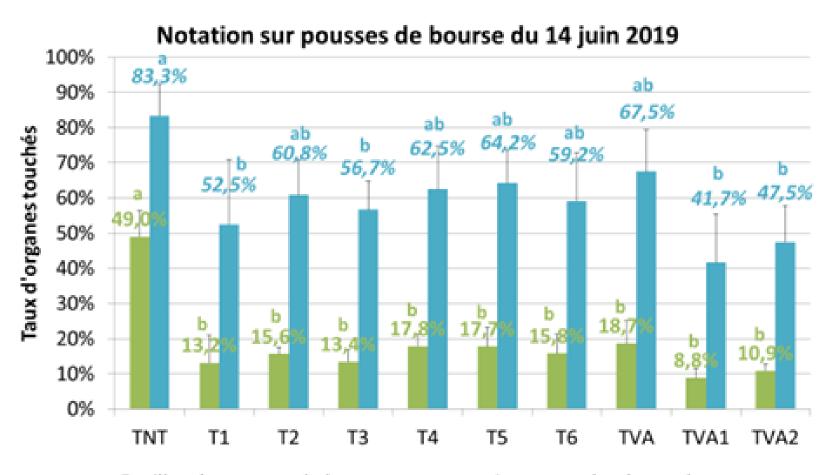
TNT	Témoin non traité		
T1	Référence cuivre + soufre		
T2	Référence cuivre allégée + soufre		
Т3	T2	+	Huiles Essentielles d'origan (<i>Origanum vulgarum</i>) et clou de girofle (<i>Sygyzium aromaticum</i>) fournies par Golgemma®
T4	T2	+	Infusion 3 plantes : sureau (Sambucus nigra), serpolet (Thymus serpyllum), clou de girofle (Sygyzium aromaticum)
T5	T2	+	Quercynol [®]
Т6	T2	+	ISR®
TVA	T2	+	Lactoserum (fourni par le GAEC des Frisonnes (37160))
TVA1	T2	+	Macération de chêne préparée sur la station de la Morinière avec des écorces de chêne de chez Herbio Cailleau®
TVA2	T2	+	Kanne Brottrunk®

Au total, la modalité référence cuivre a reçu 2 kg/ha de cuivre métal contre 0.8 kg/ha de cuivre métal sur les modalités T2, T3, T4, T5, T6, TVA, TVA1 et TVA2.



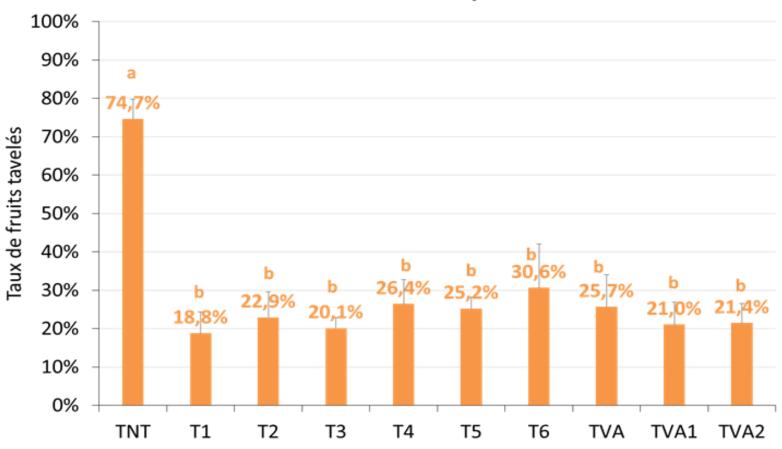
Préparation et doses

Modalité	Produits
T1	Bouillie bordelaise Macclesfield 80 à 1kg/ha (soit 200g de cuivre métal) par traitement + 4 kg de soufre
T2	Bouillie bordelaise Macclesfield 80 à 0.25, 0.33 ou 0.5 kg/ha (soit entre 50 et 100 g de cuivre métal/ha) + 4 kg de soufre. Doses en fonction du RIM : 0.5 kg/ha pour un RIM>500, 0.33 kg/ha pour un 300 <rim<500 0.25="" et="" ha="" kg="" pour="" rim<300.<="" th="" un=""></rim<500>
Т3	T2+ 200 mL/ha d'huiles essentielles dont 1/3 d'origan et 2/3 de clou de girofle. Ces huiles sont mélangées à la même quantité d'huile végétale (colza) et à quelques gouttes de liquide vaisselle afin de faciliter la dispersion dans l'eau, soit 0,04%.
T4	T2 + infusion de sureau, serpolet et clou de girofle est préparée à raison de 5 kg/ha de plantes sèches avec 1/3 de plantes chacune. Les plantes sont mises dans de l'eau (1v de plantes pour 10v d'eau). La préparation est chauffée jusqu'à 95°C puis refroidie à température ambiante, et filtrée.
T5	T2 + extrait de Quercynol® est préparé avec 350 g/ha d'extrait sec dilué directement dans l'eau.
Т6	T2 + 1 L/ha d'ISR®
TVA	T2 + 50L/ha de lactosérum stocké au froid à 1°C (durée de stockage entre 1 et 10 jours).
TVA1	T2 + macération de chêne a été réalisée avec 5kg/ha d'écorces. Les écorces sont mises pendant 3 jours à macérer dans l'eau (1v d'écorces pour 10v d'eau) à température ambiante, puis la préparation est filtrée.
TVA2	T2 + 50 L/ha de Kanné Brottrunk®



Positionnement des traitements

Résultats sur pousses – 14 juin 2019

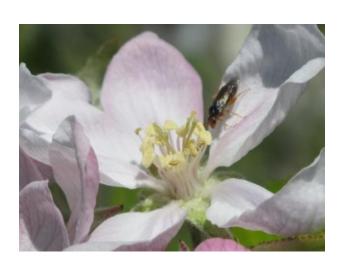


- Feuilles de pousses de bourse avec au moins une tache de tavelure
- Pousses de bourse avec au moins une feuille tavelée

Résultats sur fruits – 14 juin 2019

Notation sur fruits du 14 juin 2019

Bilan des essais sur tavelure

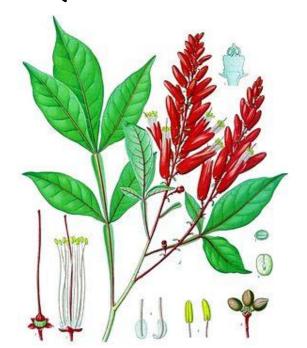

- Efficacité très faible des PNPP testées
- D'autres essais de PNPP commercialisées montrent des efficacités importantes quand les décoctions sont concentrées (plus de 30x) ou quand les huiles essentielles sont mises à plus de 5% du volume de bouillie
- → Coût?
- → Mode d'extraction?
- Perspectives:
 - Identifier un mode d'extraction et de concentration simple à faire « à la ferme »
 - Tester des programmes selon le mode d'action des extraits: préventif/curatif/stimulateur des défenses/fertilisant...

Quassia Amara— Lutte contre l'hoplocampe du pommier

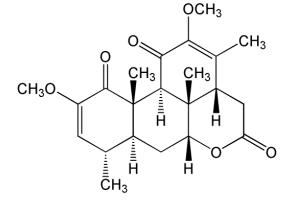
Benjamin Gandubert

Historiques des études

- Fredon Nord Pas-de-Calais, CRA-W, 2005 à 2007 : Efficacité de décoctions de Quassia amara sur l'hoplocampe du pommier
- Kienzle et al., 2006: Efficacity of Quassia extract on the apple sawfly hoplocampa testudina Klug
- Psota et al., 2010: Control of hoplocampa testudinea using the extract from Quassia amara
- IFPC, CA Normandie, 2014 : L'hoplocampe, un ravageur en progression dans les vergers cidricoles


Résultats liés à la qualité de la matière première et à celle de l'extraction

Extraction



Quassia amara

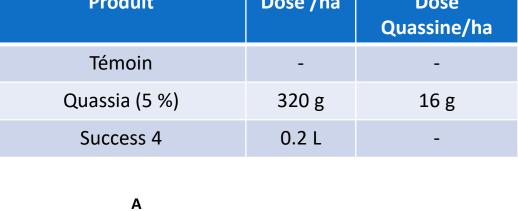
« Totum de molécules »

Quassine/Néoquassine

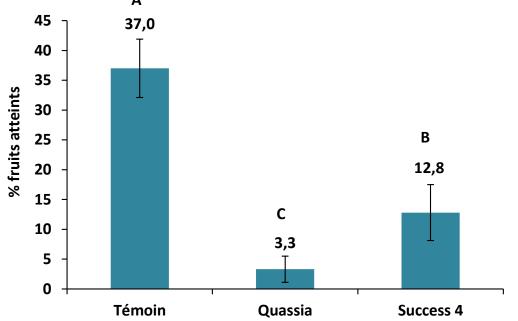
Arôme alimentaire (amertume)... mais aussi propriétés Insectifuge/insecticide

Test d'un produit dosé en quassine

Essais microparcelle


- Variété Pirouette
- Microparcelles 5 arbres / 4 blocs
- ✓ Témoin inclus
- Applications Atomiseur à dos SOLO à 500 L/ha
- Notations sur 100 fruits/bloc

Essai microparcelle 2014



Produit	Dose /ha	Dose Quassine/ha
Témoin	-	-
Quassia (5 %)	320 g	16 g
Success 4	0.2 L	-

3 applications: 11, 14 et 16 avril

Efficacité Quassia > Efficacité Success 4

Expérimentation PNPP Conclusion et perspectives

- → Qualité de la matière première: dosage d'un traceur
- → <u>Dose par hectare</u>: identifier la dose efficace -> concentrer au maximum
- → <u>Identifier les modes d'actions des extraits végétaux</u> (préventif/curatif/stimulation des défenses) et faire un programme

Expérimentation PNPP Conclusion et perspectives

Alternatives aux pesticides → une combinaison de leviers

- Variétés peu sensibles
- Produits de biocontrôle
- PNPP
- Aménagements agroécologiques
- Gestion de la fertilisation/ de la charge

Bonne connaissance des cycles et besoins des bioagresseurs

Merci de votre attention